જો સમીકરણો $x +y + z = 6$ ; $x + 2y + 3z= 10$ ; $x + 2y + \lambda z = 0$ એ એકાકી ઉકેલ ધરાવે છે તો $\lambda $ ની કિમંત . . . શક્ય નથી.
$1$
$0$
$2$
$3$
જો ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,\theta }&{\cos \,\theta } \\
{\sin \,\theta }&{ - x}&1 \\
{\cos \,\theta }&1&x
\end{array}} \right|$ અને ${\Delta _1} = \left| {\begin{array}{*{20}{c}}
x&{\sin \,2\theta }&{\cos \,\,2\theta } \\
{\sin \,2\theta }&{ - x}&1 \\
{\cos \,\,2\theta }&1&x
\end{array}} \right|$, $x \ne 0$ ;તો દરેક $\theta \in \left( {0,\frac{\pi }{2}} \right)$ માટે . . . .
$\left| {\,\begin{array}{*{20}{c}}1&a&{b + c}\\1&b&{c + a}\\1&c&{a + b}\end{array}\,} \right|= . . .. $
જો $\alpha, \beta, \gamma$ એ સમીકરણ $x ^{3}+ ax ^{2}+ bx + c =0,( a , b , c \in R$ અને $a , b \neq 0)$ ના બીજ છે અને સમીકરણો ($u,v,w$ ના ચલમાં) $\alpha u+\beta v+\gamma w=0, \beta u+\gamma v+\alpha w=0$ $\gamma u +\alpha v +\beta w =0$ એ શૂન્યતર ઉકેલ ધરાવે છે તો $\frac{a^{2}}{b}$ ની કિમંત મેળવો.
જો સમીકરણ સંહતિ $2 x+y-z=3$ ; $x-y-z=\alpha$ ; $3 x+3 y+\beta z=3$ ના ઉકેલની સંખ્યા અનંત છે તો $\alpha+\beta-\alpha \beta$ ની કિમંત મેળવો.
સમીકરણ સંહતિ $2x + y - z = 7,\,\,x - 3y + 2z = 1,\,x + 4y - 3z = 5$ ના ઉકેલની સંખ્યા મેળવો.